Math Problem of the week
lunes, 27 de junio de 2011
Random post
The dissimilar leisure sabotages another antique underneath the trapped crossroad.
lunes, 9 de mayo de 2011
More Examples of Integral by Substitution
#1
$\int\frac{tan^{-1}x}{1+x^{2}}\;dx$
$u=tan^{-1}x$
$du=\frac{dx}{1+x^2}$
$\int u\;du=\frac{u^2}{2}+C$
$\frac{(tan^{-1}x)^{2}{}}{2}+C$
#2
$\int sinx*cosx\;dx$
$u= sinx$
$du= cosxdx$
$\int u\;du= \frac{1}{2} u^2+c$
$\frac{1}{2} sin^2x+c$
#3
$\int sin^2 3x\cos 3x\;dx$
$u= 3x$
$du= 3dx$
$\frac{1}{3}du= dx$
$\frac{1}{3}\int sin^2 u\cos u\;du$
$u= sin u$
$du= cos u\;du$
$\frac{1}{3}\int u^2\;du = \frac{1}{3}\;(\frac{1}{3}u^3)+c$
$\frac{1}{9}u^3+c$
$\frac{1}{9}sin^3\;3x+c$
#4
$\int e^x(1+e^x)^{10}\;dx$
$u= 1+e^x$
$du= e^x\;dx$
$\int u^{10}\;du$
$=\frac{u^{11}}{11}$
$=\frac{(1+e^x)^{11}}{11}+C$
#5
$\int \frac{(lnx)^2}{x}\;dx$
$u= lnx$
$du= \frac{1}{x}\;dx$
$\int u^2\;du$
$=\frac{(u)^3}{3}$
$=\frac{(lnx)^3}{3}+C$
#6
$$\int \frac{1}{2x-1}\;dx$$
$$u= 2x-1$$
$$du= 2dx$$
$$\frac{1}{2}du=dx$$
$$\frac{1}{2}\int \frac{1}{u}\;du$$
$$=\frac{1}{2}lnu+C$$
$$=\frac{1}{2}ln(2x-1)+C$$
$\int\frac{tan^{-1}x}{1+x^{2}}\;dx$
$u=tan^{-1}x$
$du=\frac{dx}{1+x^2}$
$\int u\;du=\frac{u^2}{2}+C$
$\frac{(tan^{-1}x)^{2}{}}{2}+C$
#2
$\int sinx*cosx\;dx$
$u= sinx$
$du= cosxdx$
$\int u\;du= \frac{1}{2} u^2+c$
$\frac{1}{2} sin^2x+c$
#3
$\int sin^2 3x\cos 3x\;dx$
$u= 3x$
$du= 3dx$
$\frac{1}{3}du= dx$
$\frac{1}{3}\int sin^2 u\cos u\;du$
$u= sin u$
$du= cos u\;du$
$\frac{1}{3}\int u^2\;du = \frac{1}{3}\;(\frac{1}{3}u^3)+c$
$\frac{1}{9}u^3+c$
$\frac{1}{9}sin^3\;3x+c$
#4
$\int e^x(1+e^x)^{10}\;dx$
$u= 1+e^x$
$du= e^x\;dx$
$\int u^{10}\;du$
$=\frac{u^{11}}{11}$
$=\frac{(1+e^x)^{11}}{11}+C$
#5
$\int \frac{(lnx)^2}{x}\;dx$
$u= lnx$
$du= \frac{1}{x}\;dx$
$\int u^2\;du$
$=\frac{(u)^3}{3}$
$=\frac{(lnx)^3}{3}+C$
#6
$$\int \frac{1}{2x-1}\;dx$$
$$u= 2x-1$$
$$du= 2dx$$
$$\frac{1}{2}du=dx$$
$$\frac{1}{2}\int \frac{1}{u}\;du$$
$$=\frac{1}{2}lnu+C$$
$$=\frac{1}{2}ln(2x-1)+C$$
Integral by Substitution Example #4
$\int sinx*cosx\;dx$
$u= sinx$
$du= cosx \; dx$
$ \int u\;du= \frac{1}{2} u^2+c $
$ \frac{1}{2} sin^2x+c $
$u= sinx$
$du= cosx \; dx$
$ \int u\;du= \frac{1}{2} u^2+c $
$ \frac{1}{2} sin^2x+c $
Etiquetas:
example,
integral,
solve,
Substitution,
Techniques
Integral by Substitution Example #3
Calculate
SOLUTION
Let
To find the limits of integration we note that when,
and when
Therefore
SOLUTION
Let
To find the limits of integration we note that when,
and when
Therefore
Etiquetas:
example,
integral,
solve,
Substitution,
Techniques
Integral by Substitution Example #2
Calculate
SOLUTION
Let
then
therefore
SOLUTION
Let
then
therefore
viernes, 6 de mayo de 2011
Integration by Sustitution
Lets start by understanding that this method of integration comes from the rule chain method for example,
(1)
lets integrate both sides of equation 1
we can use the substitution
working with
(2)
then
we make the substitution on the integral and get,
by the fundamental theorem of calcules we get
we use equation (2) and get that
Example #1
Solve the integral
We choose
and
we change the integral to
(1)
lets integrate both sides of equation 1
we can use the substitution
working with
(2)
then
we make the substitution on the integral and get,
by the fundamental theorem of calcules we get
we use equation (2) and get that
Example #1
Solve the integral
We choose
and
we change the integral to
My first post!
For this blog im going to use latex. You can learn a lot by using this page http://www.codecogs.com/latex/eqneditor.php
Hope that the problems and solutions I post help you get better understanding of school and university math.
Bye
Hope that the problems and solutions I post help you get better understanding of school and university math.
Bye
Suscribirse a:
Entradas (Atom)